88 research outputs found

    Overconsumption, outflows and the quenching of satellite galaxies

    Get PDF
    The baryon cycle of galaxies is a dynamic process involving the intake, consumption and ejection of vast quantities of gas. In contrast, the conventional picture of satellite galaxies has them methodically turning a large gas reservoir into stars until this reservoir is forcibly removed due to external ram pressure. This picture needs revision. Our modern understanding of the baryon cycle suggests that in some regimes the simple interruption of the fresh gas supply may quench satellite galaxies long before stripping events occur, a process we call overconsumption. We compile measurements from the literature of observed satellite quenching times at a range of redshifts to determine if satellites are principally quenched through orbit-based gas stripping events – either direct stripping of the disc (ram pressure stripping) or the extended gas halo (strangulation) – or from internally driven star formation outflows via overconsumption. These time-scales show significant deviations from the evolution expected for gas stripping mechanisms and suggest that either ram pressure stripping is much more efficient at high redshift, or that secular outflows quench satellites before orbit-based stripping occurs. Given the strong redshift evolution of star formation rates, at high redshift even moderate outflow rates will lead to extremely short delay times with the expectation that high-redshift (z > 1.5) satellites will be quenched almost immediately following the cessation of cosmological inflow. Observations of high-redshift satellites give an indirect but sensitive measure of the outflow rate, with current measurements suggesting that outflows are no larger than 2.5 times the star formation rate for galaxies with a stellar mass of 1010.5 M⊙

    Star formation and environmental quenching of GEEC2 group galaxies at z ∼ 1

    Get PDF
    We present new analysis from the Group Environment Evolution Collaboration 2 (GEEC2) spectroscopic survey of galaxy groups at 0.8 < z < 1. Our previous work revealed an intermediate population between the star-forming and quiescent sequences and a strong environmental dependence in the fraction of quiescent galaxies. Only ∼5 per cent of star-forming galaxies in both the group and field sample show a significant enhancement in star formation, which suggests that quenching is the primary process in the transition from the star-forming to the quiescent state. To model the environmental quenching scenario, we have tested the use of different exponential quenching time-scales and delays between satellite accretion and the onset of quenching. We find that with no delay, the quenching time-scale needs to be long in order to match the observed quiescent fraction, but then this model produces too many intermediate galaxies. Fixing a delay time of 3 Gyr, as suggested from the local Universe, produces too few quiescent galaxies. The observed fractions are best matched with a model that includes a delay that is proportional to the dynamical time and a rapid quenching time-scale (∼0.25 Gyr), but this model also predicts intermediate galaxies Hδ strength higher than that observed. Using stellar synthesis models, we have tested other scenarios, such as the rejuvenation of star formation in early-type galaxies and a portion of quenched galaxies possessing residual star formation. If environment quenching plays a role in the GEEC2 sample, then our work suggests that only a fraction of intermediate galaxies may be undergoing this transition and that quenching occurs quite rapidly in satellite galaxies (≲0.25 Gyr)

    A Single-Lumen Central Venous Catheter for Continuous and Direct Intra-abdominal Pressure Measurement

    Get PDF
    Background: Abdominal compartment syndrome (ACS) is associated with high morbidity and mortality rates. Therefore, the need for a good diagnostic tool to predict intra-abdominal hypertension (IAH) and progression to ACS is paramount. Bladder pressure (BP) has been used for several years for intra-abdominal pressure (IAP) measurement but has the disadvantage that it is not a continuous measurement. In this study, a single-lumen central venous catheter (CVC) is placed through the abdominal wall into the abdominal cavity to continuously and directly monitor the intra-abdominal pressure (CDIAP). The aim of this study was to evaluate the use of CDIAP to measure BP as a representative of the true IAP. Methods: Both BP and CDIAP were prospectively recorded on a variety of surgical patients admitted to the intensive care unit (ICU) from March 2003 up to December 2004. At the end of the surgical procedure, the CVC was placed through the abdominal wall and connected to a pressure transducer. In addition, the BP was measured through the urine drainage port after clamping the catheter and filling the bladder with 50 ml of 0.9% saline. At least three paired measurements (BP and CDIAP) were performed for at least one day on the ICU in a standardized manner at preset time intervals on each patient. The paired measurements were compared using the Bland-Altman (B-A) method. Data are presented as mean ± standard deviation. Results: Over a period of 22 months (March 2003 until December 2004), 125 paired measurements of both BP and CDIAP were recorded on 25 patients. The mean age was 72.4 ± 6.6 years. Eighteen patients underwent central vascular surgery, and seven patients with peritonitis received laparotomy. The mean CDIAP was 11.4 ± 4.8 (range 2-30) mmHg, and the BP was 12.9 ± 5.3 (range 3-37) mmHg. The mean difference between CDIAP and BP was 1.6 ± 2.7 mmHg. There was an acceptable level of agreement (intraclass correlation 0.82) between IAP measured by BP and IAP measured via CDIAP. Conclusion: Continuous direct intra-abdominal pressure measurement proved that the BP measurement approach of Kron is representative of the IAP. CDIAP measurement is accurate and makes it easier for the nursing staff to be informed of the IAP

    Do group dynamics play a role in the evolution of member galaxies?

    Get PDF
    We examine galaxy groups from the present epoch to z ∼ 1 to explore the impact of group dynamics on galaxy evolution. We use group catalogues from the Sloan Digital Sky Survey (SDSS), the Group Environment and Evolution Collaboration (GEEC) and the high-redshift GEEC2 samples to study how the observed member properties depend on the galaxy stellar mass, group dynamical mass and dynamical state of the host group. We find a strong correlation between the fraction of non-star-forming (quiescent) galaxies and galaxy stellar mass, but do not detect a significant difference in the quiescent fraction with group dynamical mass, within our sample halo mass range of ∼1013–1014.5 M⊙, or with dynamical state. However, at z ∼ 0.4 we do find some evidence that the quiescent fraction in low-mass galaxies [log10(Mstar/M⊙) ≲ 10.5] is lower in groups with substructure. Additionally, our results show that the fraction of groups with non-Gaussian velocity distributions increases with redshift to z ∼ 0.4, while the amount of detected substructure remains constant to z ∼ 1. Based on these results, we conclude that for massive galaxies [log10(Mstar/M⊙) ≳ 10.5], evolution is most strongly correlated to the stellar mass of a galaxy with little or no additional effect related to either the group dynamical mass or the dynamical state. For low-mass galaxies, we do find some evidence of a correlation between the quiescent fraction and the amount of detected substructure, highlighting the need to probe further down the stellar mass function to elucidate the role of environment in galaxy evolution

    The evolution of galaxy groups and of galaxies therein

    Full text link
    Properties of groups of galaxies depend sensitively on the algorithm for group selection, and even the most recent catalogs of groups built from redshift-space selection should suffer from projections and infalling galaxies. The cosmo-dynamical evolution of groups from initial Hubble expansion to collapse and virialization leads to a fundamental track (FT) in virial-theorem-M/L vs crossing time. The increased rates of mergers, both direct and after dynamical friction, in groups relative to clusters, explain the higher fraction of elliptical galaxies at given local number density in X-ray selected groups, relative to clusters, even when the hierarchical evolution of groups is considered. Galaxies falling into groups and clusters should later travel outwards to typically 2 virial radii, which is somewhat less than the outermost radius where observed galaxy star formation efficiencies are enhanced relative to field galaxies of same morphological type. An ongoing analysis of the internal kinematics of X-ray selected groups suggests that the radial profiles of line of sight velocity dispersion are consistent with isotropic NFW distributions for the total mass density, with higher (lower) concentrations than LambdaCDM predictions in groups of high (low) mass. The critical mass, at M200 ~ 10^13 M_sun is consistent with possible breaks in the X-ray luminosity-temperature and Fundamental Plane relations. The internal kinematics of groups indicate that the M-T relation of groups should agree with that extrapolated from clusters with no break at the group scale. The analyses of observed velocity dispersion profiles and of the FT both suggest that low velocity dispersion groups (compact and loose, X-ray emitting or undetected) are quite contaminated by chance projections.Comment: Invited review, ESO workshop "Groups of Galaxies in the Nearby Universe", held in Santiago, Chile, 5-9 December 2005, ed. I. Saviane, V. Ivanov & J. Borissova, 16 page

    Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers

    Full text link
    We present a new methodology to determine the expansion history of the Universe analyzing the spectral properties of early type galaxies (ETG). We found that for these galaxies the 4000\AA break is a spectral feature that correlates with the relative ages of ETGs. In this paper we describe the method, explore its robustness using theoretical synthetic stellar population models, and apply it using a SDSS sample of \sim14 000 ETGs. Our motivation to look for a new technique has been to minimise the dependence of the cosmic chronometer method on systematic errors. In particular, as a test of our method, we derive the value of the Hubble constant H0=72.6±2.8H_0 = 72.6 \pm 2.8 (stat) ±2.3\pm2.3 (syst) (68% confidence), which is not only fully compatible with the value derived from the Hubble key project, but also with a comparable error budget. Using the SDSS, we also derive, assuming w=constant, a value for the dark energy equation of state parameter w=1±0.2w = -1 \pm 0.2 (stat) ±0.3\pm0.3 (syst). Given the fact that the SDSS ETG sample only reaches z0.3z \sim 0.3, this result shows the potential of the method. In future papers we will present results using the high-redshift universe, to yield a determination of H(z) up to z1z \sim 1.Comment: 25 pages, 17 figures, JCAP accepte

    Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements

    Get PDF
    We present new determinations of the cosmic expansion history from red-envelope galaxies. We have obtained for this purpose high-quality spectra with the Keck-LRIS spectrograph of red-envelope galaxies in 24 galaxy clusters in the redshift range 0.2 < z < 1.0. We complement these Keck spectra with high-quality, publicly available archival spectra from the SPICES and VVDS surveys. We improve over our previous expansion history measurements in Simon et al. (2005) by providing two new determinations of the expansion history: H(z) = 97 +- 62 km/sec/Mpc at z = 0.5 and H(z) = 90 +- 40 km/sec/Mpc at z = 0.8. We discuss the uncertainty in the expansion history determination that arises from uncertainties in the synthetic stellar-population models. We then use these new measurements in concert with cosmic-microwave-background (CMB) measurements to constrain cosmological parameters, with a special emphasis on dark-energy parameters and constraints to the curvature. In particular, we demonstrate the usefulness of direct H(z) measurements by constraining the dark- energy equation of state parameterized by w0 and wa and allowing for arbitrary curvature. Further, we also constrain, using only CMB and H(z) data, the number of relativistic degrees of freedom to be 4 +- 0.5 and their total mass to be < 0.2 eV, both at 1-sigma.Comment: Submitted to JCA

    Improved constraints on the expansion rate of the Universe up to z~1.1 from the spectroscopic evolution of cosmic chronometers

    Get PDF
    We present new improved constraints on the Hubble parameter H(z) in the redshift range 0.15 < z < 1.1, obtained from the differential spectroscopic evolution of early-type galaxies as a function of redshift. We extract a large sample of early-type galaxies (\sim11000) from several spectroscopic surveys, spanning almost 8 billion years of cosmic lookback time (0.15 < z < 1.42). We select the most massive, red elliptical galaxies, passively evolving and without signature of ongoing star formation. Those galaxies can be used as standard cosmic chronometers, as firstly proposed by Jimenez & Loeb (2002), whose differential age evolution as a function of cosmic time directly probes H(z). We analyze the 4000 {\AA} break (D4000) as a function of redshift, use stellar population synthesis models to theoretically calibrate the dependence of the differential age evolution on the differential D4000, and estimate the Hubble parameter taking into account both statistical and systematical errors. We provide 8 new measurements of H(z) (see Tab. 4), and determine its change in H(z) to a precision of 5-12% mapping homogeneously the redshift range up to z \sim 1.1; for the first time, we place a constraint on H(z) at z \neq 0 with a precision comparable with the one achieved for the Hubble constant (about 5-6% at z \sim 0.2), and covered a redshift range (0.5 < z < 0.8) which is crucial to distinguish many different quintessence cosmologies. These measurements have been tested to best match a \Lambda CDM model, clearly providing a statistically robust indication that the Universe is undergoing an accelerated expansion. This method shows the potentiality to open a new avenue in constrain a variety of alternative cosmologies, especially when future surveys (e.g. Euclid) will open the possibility to extend it up to z \sim 2.Comment: 34 pages, 15 figures, 6 tables, published in JCAP. It is a companion to Moresco et al. (2012b, http://arxiv.org/abs/1201.6658) and Jimenez et al. (2012, http://arxiv.org/abs/1201.3608). The H(z) data can be downloaded at http://www.physics-astronomy.unibo.it/en/research/areas/astrophysics/cosmology-with-cosmic-chronometer

    Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description

    Get PDF
    We describe a new Large Program in progress on the Gemini North and South telescopes: Gemini Observations of Galaxies in Rich Early Environments (GOGREEN). This is an imaging and deep spectroscopic survey of 21 galaxy systems at 1 10 in halo mass. The scientific objectives include measuring the role of environment in the evolution of low-mass galaxies, and measuring the dynamics and stellar contents of their host haloes. The targets are selected from the SpARCS, SPT, COSMOS, and SXDS surveys, to be the evolutionary counterparts of today's clusters and groups. The new red-sensitive Hamamatsu detectors on GMOS, coupled with the nod-and-shuffle sky subtraction, allow simultaneous wavelength coverage over λ ∼ 0.6–1.05 μm, and this enables a homogeneous and statistically complete redshift survey of galaxies of all types. The spectroscopic sample targets galaxies with AB magnitudes z΄ < 24.25 and [3.6] μm < 22.5, and is therefore statistically complete for stellar masses M* ≳ 1010.3 M⊙, for all galaxy types and over the entire redshift range. Deep, multiwavelength imaging has been acquired over larger fields for most systems, spanning u through K, in addition to deep IRAC imaging at 3.6 μm. The spectroscopy is ∼50 per cent complete as of semester 17A, and we anticipate a final sample of ∼500 new cluster members. Combined with existing spectroscopy on the brighter galaxies from GCLASS, SPT, and other sources, GOGREEN will be a large legacy cluster and field galaxy sample at this redshift that spectroscopically covers a wide range in stellar mass, halo mass, and clustercentric radius

    Solar Wind Turbulence and the Role of Ion Instabilities

    Get PDF
    International audienc
    corecore